Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
China CDC Wkly ; 5(1): 1-4, 2023 Jan 06.
Article in English | MEDLINE | ID: covidwho-2232799

ABSTRACT

What is already known about this topic?: There is a toilet flush-soil stack-floor drain pathway of aerosol transmission in multistory and high-rise buildings, but the influencing factors are not completely clear. What is added by this report?: The poor airtightness of the connecting parts of the floor drain, as well as pressure fluctuations in the sewage pipe during toilet flushing caused by blockage of the soil stack vent, may lead to the cross-floor transmission of viral aerosols through the soil stack and floor drains. What are the implications for public health practice?: In multistory and high-rise buildings, the bathroom floor drains should be kept sealed, and floor drain connecting parts should be airtight. Furthermore, the soil stack vent should not be blocked. In this way, the cross-floor transmission of viral aerosols can be effectively reduced.

2.
China CDC Wkly ; 4(26): 565-569, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1912763

ABSTRACT

What is already known about this topic?: Environmental factors such as temperature and humidity play important roles in the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via droplets/aerosols. What is added by this report?: Higher relative humidity (61%-80%), longer spreading time (120 min), and greater dispersal distance (1 m) significantly reduced SARS-CoV-2 pseudovirus loads. There was an interaction effect between relative humidity and spreading time. What are the implications for public health practice?: The findings contribute to our understanding of the impact of environmental factors on the transmission of SARS-CoV-2 via airborne droplets/aerosols.

4.
Environ Technol Innov ; 25: 102165, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1568695

ABSTRACT

Face masks are critical in preventing the spread of respiratory infections including coronavirus disease 2019 (COVID-19). Different types of masks have distinct filtration efficiencies (FEs) with differential costs and supplies. Here we reported the impact of breathing volume and wearing time on the inward and outward FEs of four different mask types (N95, surgical, single-use, and cloth masks) against various sizes of aerosols. Specifically, 1) Mask type was an important factor affecting the FEs. The FEs of N95 and surgical mask were better than those of single-use mask and cloth mask; 2) As particle size decreased, the FEs tended to reduce. The trend was significantly observed in FEs of aerosols with particle size < 1 µ m ; 3) After wearing N95 and surgical masks for 0, 2, 4, and 8 h, their FEs (%) maintained from 95.75 ± 0.09 to 100 ± 0 range. While a significant decrease in FEs were noticed for single-use masks worn for 8 h and cloth masks worn >2 h under deep breathing (30 L/min); 4) Both inward and outward FEs of N95 and surgical masks were similar, while the outward FEs of single-use and cloth masks were higher than their inward FEs; 5) The FEs under deep breathing was significantly lower than normal breathing with aerosol particle size <1 µ m. In conclusion, our results revealed that masks have a critical role in preventing the spread of aerosol particles by filtering inhalation, and FEs significantly decreased with the increasing of respiratory volume and wearing time. Deep breathing may cause increasing humidity and hence decrease FEs by increasing the airflow pressure. With the increase of wearing time, the adsorption capacity of the filter material tends to be saturated, which may reduce FEs. Findings may be used to provide information for policies regarding the proper use of masks for general public in current and future pandemics.

5.
Sci Total Environ ; 778: 146040, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1117650

ABSTRACT

From June 11, 2020, a surge in new cases of coronavirus disease 2019 (COVID-19) in the largest wholesale market of Beijing, the Xinfadi Market, leading to a second wave of COVID-19 in Beijing, China. Understanding the transmission modes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the personal behaviors and environmental factors contributing to viral transmission is of utmost important to curb COVID-19 rise. However, currently these are largely unknown in food markets. To this end, we completed field investigations and on-site simulations in areas with relatively high infection rates of COVID-19 at Xinfadi Market. We found that if goods were tainted or personnel in market was infected, normal transaction behaviors between sellers and customers, daily physiological activities, and marketing activities could lead to viral contamination and spread to the surroundings via fomite, droplet or aerosol routes. Environmental factors such as low temperature and high humidity, poor ventilation, and insufficient hygiene facilities and disinfection practices may contribute to viral transmission in Xinfadi Market. In addition, precautionary control strategies were also proposed to effectively reduce the clustering cases of COVID-19 in large-scale wholesale markets.


Subject(s)
COVID-19 , SARS-CoV-2 , Beijing/epidemiology , China/epidemiology , Humans , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL